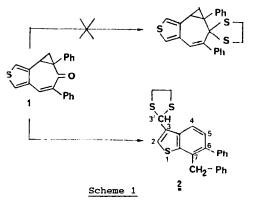
UNUSUAL CARBON-CARBON DOUBLE BOND CLEAVAGE IN THIOPHENOHOMOTROPONE

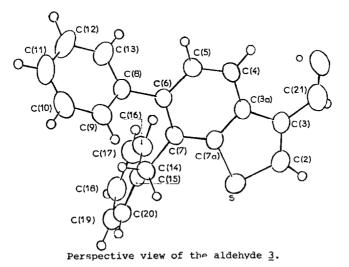
SYSTEM PROMOTED BY ETHANEDITHIOL

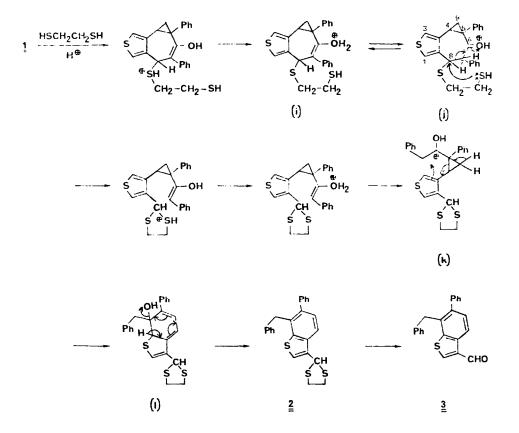

Bernard Hanquet, Mohamed El Borai[†] and Roger Guilard^{*} Laboratoire de Synthèse et d'Electrosynthèse Organométallique associé au C.N.R.S., (LA 33), Faculté des Sciences "Gabriel", 6, Bd Gabriel, 21100 Dijon, France.

Yves Dusausoy

Laboratoire de Minéralogie et Cristallographie, Equipe de Recherche associée au C.N.R.S., n° 162, Faculté des Sciences, B. P. n° 239, 54506 Vandoeuvre les Nancy, France.

Summary : Non classical carbon-carbon double bond cleavage in a homoaromatic system is initiated by ethanedithiol and p-toluenesulfonic acid. The structure of the unexpected product is proved by X-ray analysis. The proposed mechanism is supported by deuterium labelling experiments and common reactivity considerations.

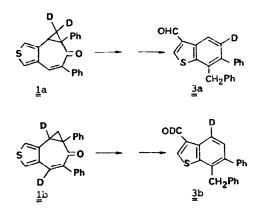

In previous publications, we reported the synthesis and structural data of thiopheno-[c] tropones¹ and homotropones². Numerous attempts to protect the carbonyl group of thiophenotropones lead only to recovered materials, while some acetal and dithioacetal compounds had been formed in other troponoid systems³⁻⁵. A priori, the protection of the less conjugated thiopheno[c] homotropone <u>1</u> could be expected to succeed. In our case, a dithioacetal 2^{++} was obtained (Scheme 1), rather than the anticipated carbonyl regeneration. In this paper we describe the reaction, the structural data of the obtained product, and we propose a possible mechanism for this transformation.



 † On leave from Faculty of Science, University of Tanta, Tanta, Egypt. †† Satisfactory analytical data were obtained for all new compounds.

A mixture of 3.93 g (12 mM) of 5,7-diphenylthiopheno [a] homotropone $\underline{1}^2$, 5.0 cm³ (60 mM) ethanedithiol and 2.28 g (12 mM) of p-toluenesulfonic acid in 100 cm³ dry toluene was refluxed for twelve hours. The resulting brown solution was cooled and quenched with 50 cm³ of 2N potassium hydroxyde. Extraction with ether, purification by silica column chromatography eluting with a mixture of methylene chloride-hexane (1-1) gave a residue, which was recrystallized from the same mixture. $\underline{2}$ (1.94 g) mp 155°C in 40 % yield; $C_{24}H_{20}S_3$; IR : no carbonyl absorption; MS : m/e = 404 (M[‡]), 376, 285, 253, 234, 221 ; ¹H NMR (100 MHz, δ ppm in CDCl₃ from TMS), 3.40 (m, 4H, -SCH₂CH₂S-) ; 4.24 (s, 2H, -CH₂-) ; 5.98 (d, J = 1.0 Hz, 1H, -H₃,) ; 7.0-7.3 (m, 5H, -C₆H₅) ; 7.32 (br.s, 5H, benzylic-C₆H₅) ; 7.39 (d, J = 8.3 Hz, 1H, -H₅) ; 7.57 (d, J = 1.0 Hz, 1H, -H₂) ; 7.86 (d, J = 8.3 Hz, 1H, -H₄). Acid hydrolysis according to HOJO's procedure⁶ gave an aldehydic compound ($\underline{3}$, mp 136°C in 62 % yield ; $C_{22}H_{16}OS$; IR : $v_{C=0}$ = 1675 cm⁻¹; MS : m/e = 328 (M[‡]), 221, 189 ; ¹H NMR (100 MHz, δ ppm in CDCl₃ from TMS), 4.30 (s, 2H, -CH₂-) ; 7.0 - 7.3 (m, 5H, -C₆H₅) ; 7.34 (br.s, 5H, benzylic -C₆H₅) ; 7.49 (d, J = 8.4 Hz, 1H, -H₅) ; 8.23 (s, 1H, -H₂) ; 8.61 (d, J = 8.4 Hz, 1H, -H₄) ; 10.11 (s, 1H, -CHO).

The molecular structure was proved by X-ray measurements. The compound crystallized in the triclinic system space group PI with a = 7.067 (2), b = 9.266 (2), c = 13.396 (2), $\alpha = 102.95$ (2), $\beta = 99.56$ (2), $\gamma = 101.06$ (2); 2940 reflexions ($\sigma(I)/I > 1$) were used to refine the structure. The structure was solved by direct methods using the MULTAN program⁷. The final R was 0.053. The aldehydic group is attached to the C₃ of the thiophene ring and the oxygen atom is found 0.11 Å from the benzothiophene plane. The dihedral angle between the phenyl and benzyl groups is 92°. The angle formed between these two groups are 126° and 98° respectively with the benzothiophene plane.



Scheme 2

The first step of the reaction involves 1,4 addition of ethanedithiol in the strongly acidic medium. After a proton migration, the Michael adduct is tautomerized to a protonated ketone (j) which undergoes a non-classical rearrangement : the nucleophilic sulfur attack at C_8 and the electrophilic character of the oxonium function induce the carbon-carbon bond cleavage. Two subsequent tautomeric displacements generate the substituted benzylic carbocation (k). This electrophilic species attacks the thiophene ring at the α -carbon atom. Loss of the cyclopropyl hydrogen with concomitant ring opening allow the formation of the bicyclic system (l). A dehydration finally leads to the benzo [b] thiophene dithioacetal 2.

Several steps have been proved by deuterium labelling (Scheme 3). The dideuterocom-

pound $\underline{1}a$ gives the monodeuterated product $\underline{3}a$. In the case of $\underline{1}b$, the dideuterated aldehyde $\underline{3}b$ is isolated.

Scheme 3

Some studies concerning other systems and different thiols are in progress.

References

1. R. Guilard and P. Fournari, Bull. Soc. Chim., 1437 (1971).

- 2. B. Hanquet, R. Guilard and P. Fournari, Bull. Soc. Chim., 571 (1977).
- 3. H. E. Simmons and T. Fukunaka, J. Amer. Chem. Soc., <u>89</u>, 5208 (1967).
- 4. H. A. Corver and R. F. Childs, J. Amer. Chem. Soc., <u>94</u>, 6201 (1972).
- 5. M. Cavazza, G. Morganti and F. Pietra, Rec. Trav. Chim., Pays Bas, 165 (1979).
- 6. M. Hojo and R. Masuda, Synthesis, 678 (1976).
- 7. G. Germain, P. Main and M. M. Woolfson, Acta Cryst., A27, 368 (1971).
- K. Fuji, T. Kawabata, M. Node and E. Fujita, Tetrahedron Lett., <u>22</u>, 875 (1981).

(Received in France 25 March 1982)